Quality Assurance Procedure

CONFIGURATION MANAGEMENT - CHANGE PROCESS AND CONTROL

Abstract

This document describes the procedures and responsibilities for the systematic and uniform review of all engineering changes to the LHC configuration baseline, to ensure that the impact of changes on performance, cost and schedule are identified and thoroughly evaluated before the decision to incorporate them is taken.

<table>
<thead>
<tr>
<th>Prepared by</th>
<th>Checked by</th>
<th>Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Mottier</td>
<td>LHC Quality Assurance Working Group</td>
<td>Paul Faugeras</td>
</tr>
<tr>
<td>EST/ISS</td>
<td></td>
<td>Deputy to LHC Project Leader for Quality Assurance</td>
</tr>
<tr>
<td>Marcel.Mottier@cern.ch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
History of Changes

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Date</th>
<th>Pages</th>
<th>Description of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1998-06-17</td>
<td></td>
<td>1st draft</td>
</tr>
<tr>
<td>0.2</td>
<td>1998-07-30</td>
<td></td>
<td>Update following QAPWG meeting.</td>
</tr>
<tr>
<td>1.0</td>
<td>1998-09-17</td>
<td></td>
<td>Released</td>
</tr>
<tr>
<td>1.1</td>
<td>1999-11-16</td>
<td></td>
<td>Correction of reference in section 9</td>
</tr>
</tbody>
</table>
Table of Contents

1. PURPOSE ... 4
2. SCOPE .. 4
3. POLICY .. 4
4. RESPONSIBILITIES .. 4
5. DEFINITIONS ... 5
6. INTRODUCTION TO CONFIGURATION BASELINE AND CHANGE CONTROL 5
 6.1 BASELINE .. 5
 6.2 CHANGE CONTROL .. 6
7. SELECTION OF CONFIGURATION ITEMS .. 6
 7.1 HARDWARE ITEMS .. 7
 7.2 PARAMETERS ... 7
 7.3 DOCUMENTS .. 8
8. CHANGE PROCESS AND CONTROL ... 8
 8.1 CORRECTION OF TRANSCRIPTION ERRORS .. 8
 8.2 CHANGE REQUEST .. 9
 8.3 ECR PREPARATION .. 9
 8.4 ECR EVALUATION ... 9
 8.4.1 IMPACT ON COST, SCHEDULE AND TECHNICAL PERFORMANCE 11
 8.4.2 IMPACT ON RELATED ITEMS ... 11
 8.5 CLASSIFICATION OF CHANGES ... 13
 8.6 PROCESSING CLASS I CHANGES ... 13
 8.7 PROCESSING CLASS II CHANGES ... 13
 8.7.1 NORMAL PROCEDURE .. 13
 8.7.2 SIMPLIFIED PROCEDURE ... 14
 8.8 NOTIFICATION OF CLASS I CHANGE COMPLETION 14
9. RELATED DOCUMENTATION ... 14
10. ANNEXES .. 14
1. PURPOSE

To provide a procedure for the systematic and uniform review of all engineering changes to the LHC configuration baseline, to ensure that the impact of changes on performance, cost and schedule are identified and thoroughly evaluated before the decision to incorporate them is taken.

2. SCOPE

This procedure is applicable to:

- All the hardware assemblies, sub-assemblies and parts of the LHC systems that are included in the Project Breakdown Structure (PBS) of the Project.
- All the critical measuring and test equipment required to manufacture, install and verify the performance of the LHC.
- All the main parameters defining the LHC and the injector chain layouts and beam performance.
- All the LHC systems parameters that have an effect on the LHC performance.
- All the LHC systems parameters which may affect the LHC performance through indirectly induced changes on other systems. (See "Documents and Parameters Process and Control" [1]).

3. POLICY

Configuration management (CM) is the management process that ensures that consistency is maintained among the parameters, the requirements, the physical and functional configuration of the LHC and its documentation, particularly as changes are made throughout the LHC life-cycle.

The CM process ensures the integrity of the LHC systems and components during their design, procurement, installation, operation and maintenance life-cycle stages.

CM is applied to the parameters, systems, components, instructions and procedures whose failure to satisfy requirements could lead to violations of safety requirements; non-compliance with regulations; significant loss of research capability; significant changes in cost or schedule.

CM is applied using a graded approach. A graded approach means that the depth and rigor of details necessary and the magnitude of resources required to carry-out the CM process are commensurate with the relative importance of systems, components, instructions and procedures in terms of safety, performance, cost, and complexity.

4. RESPONSIBILITIES

The Technical Co-ordination Committee Chairman has the responsibility for all aspects of configuration management.

The Parameters and Layouts Committee Chairman has responsibility for the configuration management of the Project level parameters and layouts (see "Documents and Parameters Process and Control" [1], section 7.2.1).

Project Engineers (PE) in charge of systems, sub-systems, assemblies and parts are responsible for:

- Verifying that the structure of the systems, sub-systems, assemblies and parts for which they are responsible are correctly represented in the LHC PBS and maintained up to date.
- Verifying that the configuration baseline documents of the systems, sub-systems, assemblies and parts for which they are responsible are stored in the Engineering Data Management System and maintained up to date.
- Managing engineering change proposals in accordance with the procedures described in this document.
- Defining appropriate configuration management procedures to be applied during the fabrication, assembly, test and installation phases of systems, sub-systems, assemblies and parts.

5. DEFINITIONS

Configuration: The functional and physical characteristics of hardware as described in technical documentation and achieved in a product.

Configuration Management (CM): The systematic evaluation, co-ordination, review, approval or disapproval, documentation and implementation of all proposed changes in the configuration of a product, after formal establishment of its configuration baseline.

Configuration Items (CI): Configuration items are the basic units of configuration management. They may vary in complexity, size and type, from a cryo-magnet assembly to a coil spacer. Regardless of complexity, type or size, the configuration of a CI is documented and controlled.

Configuration Baseline: The set of approved and released documents that represent the definition of a product at a specific point in time. Configuration baselines are established whenever it is necessary to define a reference configuration during the product's life-cycle. This baseline is then used as a starting point for further activities.

Engineering Change: Any design change that will require a revision of the Configuration Baseline and associated documents. This includes changes that will impact the cost, schedule and performance of the LHC.

Engineering Change Request (ECR): A document used to propose an engineering change.

Engineering Change Order (ECO): A document used to implement an approved engineering change.

Engineering Change Notification (ECN): A document used to notify individuals that an approved engineering change is implemented.

6. INTRODUCTION TO CONFIGURATION BASELINE AND CHANGE CONTROL

6.1 BASELINE

The LHC configuration baseline is the set of approved and released parameters and documents that represent the definition of the LHC as it is designed.
This "as-designed" configuration baseline is established as a reference configuration. It can then be used to follow the evolution of the Project through its life-cycle phases, design, procurement, installation, commissioning, and finally operation and maintenance.

At the end of the design phase the configuration baseline will contain all the drawings, specifications and manufacturing procedures necessary to manufacture, assemble, install and commission the LHC.

When the installation is completed the "as-designed" configuration baseline, incorporating all the changes required during the construction, will represent the LHC as it will have been built. It will also include the measured main characteristics of systems and components useful for operation and maintenance.

This "as-built" configuration will then be used as a reference to follow the evolution of the machine during its operating phase.

6.2 CHANGE CONTROL

As the Project advances the technical requirements become better defined as a result of the design and development activity, and technical changes have to be considered. It is the role of the engineering change control procedure to ensure that the changes are consistently reviewed, approved or rejected, implemented and reported.

The procedure defines the items to control and a method to:
- Ensure that changes to the configuration baseline are well defined, documented and approved before implementation.
- Ensure that decisions are made at the appropriate management level.

7. SELECTION OF CONFIGURATION ITEMS

Selected items of the LHC systems hardware or software (or combination of both), which need to have their configuration managed, are designated as configuration items.

Configuration items are the basic units of configuration management. They may vary in complexity, size and type, from a cryo-magnet assembly to a coil spacer. Regardless of complexity, type or size, the configuration of a CI is documented and controlled.

Not all assemblies and parts require the same level of configuration control. The more critical an item is, in terms of machine performance, reliability and safety, the more important it is to be able to trace its characteristics and history. This is valid whether the item is a complex assembly or a single component.

During the design phase of the Project, configuration management is applied to all the items listed in the PBS and their associated design and contracting data and documents.

During the production and installation phases, configuration management is applied selectively, the level of detail being commensurate with the criticality of the items.

For critical items produced in series, it may be necessary to keep track of the fully detailed bill of materials and of all the manufacturing, measurements and test data, of each individual unit. For non-critical items a sampling procedure may be adequate.

The Project Engineers in charge of systems, sub-systems, assemblies and parts shall establish, with the assistance of the Technical Coordination Committee, the appropriate level of configuration management to be applied to their equipment.
7.1 HARDWARE ITEMS

The LHC Project configuration items comprises:
- All the hardware assemblies, sub-assemblies and parts of the LHC systems that are included in the Project Breakdown Structure (PBS) of the Project.
- All the critical measuring and test equipment that are included in the PBS.

7.2 PARAMETERS

1. All the main parameters defining the LHC and the injector chain layouts and beam performance.
2. All the LHC systems parameters that have an effect on the LHC performance.
3. All the LHC systems parameters that have an effect on the design of other LHC systems.

The definitions in points 2 and 3 above apply to the following LHC systems:
- Magnet.
- Cryogenic.
7.3 DOCUMENTS

The following document types that describe the parameters, assemblies, sub-assemblies and parts listed in points 1, 2 and 3 above:

- Functional specifications.
- Interface specifications.
- Technical Description for Market Surveys.
- Technical Specifications (Technical Description for Invitations to Tender and for Price Enquiries).
- Engineering Drawings.
- Schedules.

This list shall be completed as appropriate with the reports established during the fabrication, assembly, test and installation phases of configuration items.

8. CHANGE PROCESS AND CONTROL

8.1 CORRECTION OF TRANSCRIPTION ERRORS

Despite the use of review and approval procedures to ensure that parameters and documents are checked prior to their release, errors and omissions may occur. The reason maybe a typing mistake; the omission of a word or sentence; a technical problem when translating a document from the native text processing software to the on-line format used for distribution on the Web; or any other cause. All errors of this type are identified as transcription errors.

Once a parameter table or a document has been released it may be read, printed and copied. Any correction requires that the revised parameter table or document be released once more with a new revision index.

To clearly set apart correction of transcription errors from real engineering changes the following rules shall apply:

- Corrections of transcription errors are carried under the sole responsibility of the parameter table or document author.
- Transcription errors are documented in the parameter table or document change history as "Minor correction".
- The correction of a transcription error is the only case where a new revision of a baseline parameter table or document may be released without the change being documented by an ECR.
8.2 CHANGE REQUEST

The change control procedure is shown on fig. 2.

The change process starts when a proposal for a change is formulated. Any competent person involved in the Project, at CERN, Institutes or Contractors, may propose a change. Before the formal change process is started with the preparation of an Engineering Change Request (ECR) it is recommended that the originator discuss the proposal with the responsible Project Engineer or the PLC Chairman. This exchange of ideas shall establish how the proposed change should be processed. The possibilities are:

A. The originator of the proposal, together with the responsible PE or the PLC Chairman, agree that the justification for the change is inadequate and should not be pursued.

B. The responsible PE, or the PLC Chairman, is able to assess, without a formal ECR evaluation, that the change is of low-impact (as defined in section 8.4.1) and is local (as defined in section 8.4.2). In that case, the PE or the PLC Chairman has the choice to:
 - Go ahead with a formal ECR or
 - Apply the simplified procedure described in section 8.7.2.

C. The change proposal requires a full evaluation, an ECR shall be prepared.

Cases which cannot be decided by the responsible PE, or the PLC Chairman, shall be referred to the TCC Chairman.

8.3 ECR PREPARATION

The LHC Project formal change process is initiated by the preparation of an ECR document completed by the originator of the proposal, with the assistance of either the PE in charge of the affected hardware item or the PLC Chairman as appropriate. PE's and designers of items and parameters affected by the change may be called upon to assist with the ECR preparation.

Once ready the ECR shall be forwarded to:

- The PE in charge of the affected item in the case of hardware changes.
- The PLC Chairman in the case of parameter changes.

In cases where a Contractor proposes an engineering change, the CERN's technical contact person shall prepare the ECR.

Changes affecting both parameters and hardware items shall be forwarded to the "Technical Coordination Committee" Chairman.

ECR are managed as described in "Documents and Parameters Process and Control" [1], and they shall be prepared in accordance with the "Instructions for the completion of ECR's"[2].

8.4 ECR EVALUATION

The PE or the PLC Chairman, in collaboration with PE's and Project Committees responsible for items affected by the proposal, shall first examine the merits of the proposed change, and decide whether to go ahead with a detailed evaluation or to reject the proposal.

In case the proposal is rejected at that stage, the PE or the PLC secretary shall inform the originator of the decision.

If the ECR is considered valid, it shall be evaluated to determine:
- The impact on cost, schedule or technical performance.
- The impact on related items in the PBS.

Figure 2: Change Process and Control Diagram
8.4.1 IMPACT ON COST, SCHEDULE AND TECHNICAL PERFORMANCE

For the purpose of change control, impact on cost, schedule and technical performance shall be classified as **low impact** or **high impact** based on the criteria given in table 1.

<table>
<thead>
<tr>
<th></th>
<th>Cost</th>
<th>Schedule</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low impact</td>
<td>Change of less than CHF 200’000.-</td>
<td>Less than 1 month deviation on LHC completion target date</td>
<td>Less than 5% deviation from functional requirements</td>
</tr>
<tr>
<td>High impact</td>
<td>Change of CHF 200’000.- or more</td>
<td>1 month or more deviation on LHC completion target date</td>
<td>5% or more deviation from functional requirements</td>
</tr>
</tbody>
</table>

Table 1: Definition of Impact on Cost, Schedule and Performance

When using table 1 the impact on cost, schedule and performance shall be compared individually to each of the criteria. It is sufficient that one of the high impact criteria be met to determine that the change is high impact.

It may be difficult for a PE to evaluate all the implications of a change. If this is the case the PE may seek the assistance of his supervisor and of Project Committees in carrying out the impact assessment.

8.4.2 IMPACT ON RELATED ITEMS

The second step of the evaluation shall establish whether the change's impact is **extended** or **local**.

Extended changes are changes affecting:
- LHC systems parameters.
- Principal items and their parent items in the LHC PBS.
- Identical child items of principal item attached to two or more principal items.

Local changes are changes affecting:
- one or more child items of a single principal item.

An extract of the PBS is shown in fig. 3 with examples of principal and child items.
When evaluating the extent of a change the interchangeability of the affected items shall be evaluated as well.

Interchangeability is defined as follows:

- Two or more parts or assemblies are considered interchangeable if, in all applications, they are:
 - Of an acceptable form and appearance to fulfil all requirements defined in the specification.
 - Of a proper fit (physical dimensions) to assemble with other mating items.
 - Of a proper function to meet the item specification.

Parts and assemblies meeting these criteria are completely interchangeable, one for the other (both ways) with no special adjustments, modifications, or alterations to themselves or to related parts and assemblies.

The reference to all applications means that when a part or a assembly is used in more then one parent assembly the evaluation of interchangeability must be done for each different assembly.

When evaluating the interchangeability of the children of a principal item the analysis must be done recurrently for all the children up to the principal item until it is found that the item is interchangeable.

If the analysis shows that the principal item becomes non-interchangeable as a result of the change, the change becomes an *extended change*.

The process of interchangeability analysis is shown on fig. 4.

![Flowchart Diagram](image-url)

Figure 4: Interchangeability Evaluation Diagram
8.5 CLASSIFICATION OF CHANGES

The use of classes makes it possible to adapt the change process to the evaluated impact of changes and to minimize the effort required to process the change.

Two classes of changes are defined as follows:

CLASS I Major change - Non-interchangeable hardware modifications and changes with a significant impact on cost, schedule or technical performance.

CLASS II Minor change - Interchangeable hardware modifications and changes with a low impact on cost, schedule or technical performance.

Based on the evaluation of the impact of a change and its extent, the change class can be determined using the definitions in table 2.

<table>
<thead>
<tr>
<th>Low impact change</th>
<th>Extended change</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS II</td>
<td>CLASS I</td>
</tr>
<tr>
<td>CLASS I</td>
<td>CLASS I</td>
</tr>
</tbody>
</table>

Table 2: Change class definition

8.6 PROCESSING CLASS I CHANGES

Once the evaluation is complete the PE shall update the ECR with:
- The impact, extent and resulting CLASS of the change.
- His recommendation on the acceptance or refusal of the change.
- The list of actions necessary to implement the change.
- His name and the date of the recommendation.

The ECR shall then be forwarded to the appropriate Committee Chairman and/or Approval Group Leader. The Committee Chairman and/or Approval Group Leader shall then forward the ECR to Committee members and/or Approval Group members with a request for comments.

At the end of the time allocated for the submission of comments the Committee Chairman and/or Approval Group Leader shall review the comments and take the final decision of approval or rejection of the ECR. He shall then update the ECR with:
- The final decision of acceptance or refusal of the change.
- His name and the date of the decision.

The completed ECR is used as an ECN to inform all the involved individuals of the approved change. The involved persons are:
- The members of the Committee and/or the members of the Approval Group.
- The PE in charge of the parent and child items of the affected item in the PBS.
- The PE's design team members.

The completed ECR is also forwarded as an ECO to all individuals in charge of the implementation of the change.

8.7 PROCESSING CLASS II CHANGES

8.7.1 NORMAL PROCEDURE

Once the evaluation is complete the PE shall update the ECR with:
The impact, extent and resulting CLASS of the change.
His decision on the acceptance or refusal of the change.
The list of actions necessary to implement the change.
His name and the date of the decision.

The completed ECR is used as an ECN to inform all the involved individuals of the approved change. The involved persons are:
The PE in charge of the parent and child items of the changed item in the PBS.
The PE's design team members.
The completed ECR is also forwarded as an ECO to all individuals in charge of the implementation of the change.

8.7.2 SIMPLIFIED PROCEDURE

The simplified procedure may be applied only for low-impact changes that are localised to a single item of the PBS, with no effect whatever to other PBS items. To ensure the traceability of change following this procedure, particular care shall be taken to accurately describe the change in modified drawings and documents.

The PE responsible for the item shall:
- Instruct the design office to make the necessary modifications to CAD models and drawings. The precise nature of the modification shall be entered in each drawing’s modification list.
- Instruct authors of documents, in particular engineering specifications, to make the necessary changes. The precise nature of the modification shall be entered in each document’s change history.
- Submit the drawings and documents to the appropriate review and approval process.
- Notify the PE responsible for the parent item in the PBS.

8.8 NOTIFICATION OF CLASS I CHANGE COMPLETION

When all the necessary actions to implement a CLASS I ECO are completed the PE in charge of the implementation shall:
- Update the ECO with his name and the date of the completion.
- Notify the person who authorised the change of the completion.

9. RELATED DOCUMENTATION

[1] LHC-PM-QA-303.00 Documents and Parameters Process and Control
[2] LHC-PM-QA-608.00 Instructions for the completion of ECR’s

10. ANNEXES

A.1 ECR document cover page.
A.2 Extract of the LHC Project Breakdown Structure.
 (For the current up-to-date version of the PBS see http://edms.cern.ch/TWDM/cgi/twdmproto.pm?project=LHC&action=start).
Engineering Change Request – Class I

Brief description of the proposed change(s):

<table>
<thead>
<tr>
<th>Equipment concerned:</th>
<th>Drawings concerned:</th>
<th>Documents concerned:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PE in charge of the item:</th>
<th>PE in charge of parent item in PBS:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decision of the Project Engineer:
- [] Rejected.
- [] Accepted by Project Engineer, no impact on other items.
 Actions identified by Project Engineer.
- [] Accepted by Project Engineer, but impact on other items.
 Comments from other Project Engineers required
 Final decision & actions by Project Management.

Decision of the PLO for Class I changes:
- [] Not requested.
- [] Rejected.
- [] Accepted by the Project Leader Office.
 Actions identified by Project Leader Office.

Date of Approval:

Actions to be undertaken:

Date of Completion:

Visa of QA Officer:

Note: when approved, an Engineering Change Request becomes an Engineering Change Order/Notification.

Large Hadron Collider

1 Infrastructure & General Machine Services

1.1 Civil Engineering Infrastructure

1.2 Electrical Distribution Network
1.2.1 AC Mains Network
1.2.2 DC Network Schematics

1.3 Control & Data Network

1.4 Fluid Networks

1.4.1 Air Ventilation
1.4.2 Water Cooling

1.5 Ring Cryogenic System

1.6 Tunnel Transportation Equip & Infrastructure

2 Arc & Dispersion Suppressor Equip & Facilities

2.1 Cryo Distribution Line

2.1.1 Supporting System
2.1.2 Standard Pipe Sections
2.1.3 Compensation Modules
2.1.4 Service Modules
2.1.5 QRL Jumpers
2.1.6 Return Box

2.2 Arc & Dispersion Suppressor Equip & Facilities

2.2.1 Cryo Magnets

2.2.1.1 Cold Mass Assembly
2.2.1.1.1 Collared Coil
2.2.1.1.2 Spool Pieces
2.2.1.1.3 Bus Bars
2.2.1.1.4 Yoke & related Components
2.2.1.1.5 Shrinking Cylinder & related Equip
2.2.1.1.6 Quench Diode Assembly
2.2.1.1.7 Cold Bore Pipes & Insulation
2.2.1.1.8 Beam Screens
2.2.1.1.9 Heat Exchanger Tube
2.2.1.1.10 Cold Mass Instrumentation Equip

2.2.1.2 Dipole Cryostat & related Equip
2.2.1.2.1 Vacuum Vessel
2.2.1.2.2 Thermal Shield
2.2.1.2.3 Radiation Screen
2.2.1.2.4 Multi Layer Insulation
2.2.1.2.5 Support Systems
2.2.1.2.6 Cryostat Instrumentation & Capillaries
2.2.1.2.7 Vacuum Tank Support System
2.2.1.2.8 Survey Reference Sockets
2.2.1.2.9 Fastening Devices for Transportation

2.2.2 Standard Arc Short Straight Sections

2.2.2.1 SSS Cold Mass Assembly
2.2.2.1.1 Collared Coils
2.2.2.1.2 Inertial Tube & Flange Assembly
2.2.2.1.3 Combined Sextupole-Dipole Magnet
2.2.2.1.4 Octupole Corrector
2.2.2.1.5 Tuning Quadrupole
2.2.2.1.6 Skew Quadrupole
2.2.2.1.7 Mounting Devices for Correctors
2.2.2.1.8 Electrical Connections
2.2.2.1.9 Bus Bars
2.2.2.1.10 Quench Diode Assembly
2.2.2.1.11 Cold Bore Pipes & Insulation
2.2.2.1.12 Beam Screens
2.2.2.1.13 Heat Exchanger Tube
2.2.2.1.14 Cold Mass Instrumentation Equip

2.2.2.2 SSS Cryostat & related Equip

Annex A2 Extract of the LHC Project Breakdown Structure (page 1)
2.2.2.3 Radiation Screen
Daniel VINCENT

2.2.2.4 Multi Layer Insulation
Tore WIKBERG

2.2.2.5 Support Systems
Vittorio PARMA

2.2.2.6 Cryostat Instrumentation & Capillaries
Lloyd Ralph WILLIAMS

2.2.2.7 Vacuum Vessel Support System
Peter ROHMIG

2.2.2.8 Survey Reference Sockets
Jean-Pierre QUESNEL

2.2.2.9 Fastening Devices for Transportation
Keith KERSHAW

2.2.2.10 Beam Loss Monitors
Claude FISCHER

2.2.3 Technical Service Module
Peter ROHMIG

2.2.3.1 BPM & Beam Screen Assembly
Peter ROHMIG

2.2.3.2 Cryogenic Components
Wolfgang ERDT

2.2.3.3 Insulation Vacuum Barrier System
Vittorio PARMA

2.2.3.4 Dipole Corrector Current Feedthrough Assembly
Peter ROHMIG

2.2.3.5 Cold Mass Instrumentation Feedthrough
Peter ROHMIG

2.2.3.6 TSM Vacuum Vessel Assembly
Peter ROHMIG

2.2.3.7 Thermal Shield
Peter ROHMIG

2.2.3.8 QQS Instrumentation
Peter ROHMIG

2.2.3 Dispersion Suppressor Short Straight Sections
Jean-Pierre GOURBER

2.3 other Arc Cryostats Components
Alain PONCET

2.3.1 Interconnects
Jean-Claude BRUNET

2.3.2 Auxiliary Bus Bars
Knut DAHLERUP-PETERSEN

2.3.3 other Vacuum Equip
Pierre STRUBIN

2.4 Powering Equip
Gunnar FERNQVIST

2.4.1 Feed & Return Boxes
Roberto SABAN

2.4.2 Power Converters
Frederick BORDRY

2.4.3 Quench Protection System
Felix RODRIGUEZ-MATEO

2.5 Electronics & Control Equipment in Tunnel
Robin LAUCKNER

2.5.1 Beam Instrumentation Electronics
Claude FISCHER

2.5.2 Beam Loss Monitors
Claude FISCHER

2.5.3 Vacuum Controls
Pierre STRUBIN

2.5.4 Radiation Monitors
Graham Roger STEVENSON

3 Insertion Region Equip & Facilities at Points 1 & 5
Paul FAUGERAS

3.1 Infrastructure & General Services
Paul FAUGERAS

3.1.1 Civil Engineering Infrastructure
J.-Luc BALDY

3.1.2 CE Infrastructure at Point 1
Hubert RAMMER

3.1.2 CE Infrastructure at Point 5
Timothy WATSON

3.1.3 AC Electrical Distribution Network
John PEDERSEN

3.1.4 Fluid Networks
Mans WILHELMSSON

3.1.4.1 Air Ventilation
Jean ROCHE

3.1.4.2 Water Cooling
Bernard PIROLLET

3.2 Cryo Distribution Line
Wolfgang ERDT

3.3 Insertion Magnets
Thomas TAYLOR

3.3.1 Inner Triplet
Ranko OSTOJIC

3.3.1.1 SuperConducting Quadrupole Modules
Ranko OSTOJIC

3.3.1.2 Common Cryostats
Ranko OSTOJIC

3.3.1.3 Specific Feed Boxes
Ranko OSTOJIC

3.3.2 other SuperConducting Quadrupoles
Ranko OSTOJIC

3.3.2.1 SuperConducting Quadrupole Modules
Ranko OSTOJIC

3.3.2.2 Cryostats and Feed Boxes
Ranko OSTOJIC

3.3.3 Separation Magnets
Thomas TAYLOR

3.3.3.1 Warm D1 Magnet Modules
Thomas TAYLOR

3.3.3.2 SuperConducting D2 Magnet
Thomas TAYLOR

3.3.4 Corrector Magnets
Thomas TAYLOR

3.4 Collimators
Gunnar FERNQVIST

3.5 Powering Equip
Frederick BORDRY

3.5.1 Power Converters
John PEDERSEN

3.5.2 Copper Leads
Thomas TAYLOR

3.5.3 HTS Current Leads
Pierre STRUBIN

3.6 other Vacuum Equip
Claude FISCHER

3.7 Beam Instrumentation
Gerard BACHY

3.8 ATLAS Experiment PBS (Point 1)
Thomas MEYER

3.9 CMS Experiment PBS (Point 5)

4 Insertion Region Equip & Facilities at Points 2 & 8
Paul FAUGERAS

4.1 Infrastructure & General Services
Paul FAUGERAS

4.1.1 Civil Engineering Infrastructure
J.-Luc BALDY

4.1.2 AC Electrical Distribution Network
John PEDERSEN

Annex A2 Extract of the LHC Project Breakdown Structure (page 2)
4.1.3 Control & Data Network
4.1.4 Fluid Networks
4.1.4.1 Air Ventilation
4.1.4.2 Water Cooling
4.2 Cryo Distribution System
4.2.1 Surface Cryogenic Plant
4.2.2 Cold Compressor Boxes
4.2.3 Interconnecting Box
4.2.4 Cryogenic Distribution Line
4.3 Insertion Magnets
4.3.1 Inner Triplet
4.3.1.1 SuperConducting Quadrupole Modules
4.3.1.2 Common Cryostats
4.3.1.3 Specific Feed Boxes
4.3.2 other SuperConducting Quadrupoles
4.3.2.1 SuperConducting Quadrupole Modules
4.3.2.2 Cryostats and Feed Boxes
4.3.3 SuperConducting Separation Magnets
4.3.4 Corrector Magnets
4.4 Collimators
4.5 Injection System
4.5.1 Injection Kickers
4.5.2 Injection Septa
4.6 Beam Stoppers
4.7 Powering Equip
4.7.1 Power Converters
4.7.2 Copper Leads
4.7.3 HTS Current Leads
4.8 other Vacuum Equip
4.9 Beam Instrumentation
4.10 ALICE Experiment PBS (Point 2)
4.11 LHC-B Experiment PBS (Point 8)
5 Insertion Region Equip & Facilities at Point 4
5.1 Infrastructure & General Services
5.1.1 Civil Engineering Infrastructure
5.1.2 AC Electrical Distribution Network
5.1.3 Control & Data Network
5.1.4 Fluid Networks
5.1.4.1 Air Ventilation
5.1.4.2 Water Cooling
5.2 Cryo Plant & Cryo Distribution System
5.2.1 Surface Cryogenic Plant
5.2.2 Cold Compressor Boxes
5.2.3 Interconnecting Box
5.2.4 Cryogenic Distribution Line
5.3 Insertion Quadrupoles
5.3.1 Quadrupole Cold Mass
5.3.2 Isolated Cryostat
5.3.3 Electrical Feed Box
5.4 SuperConducting Separation Magnets
5.5 Collimators
5.6 Powering Equip
5.6.1 Power Converters
5.6.2 Copper Leads
5.6.3 HTS Current Leads
5.7 Radio Frequency Equip
5.7.1 SuperConducting Cavities
5.7.2 Feedback Systems
5.7.2.1 Transverse Feedback Systems
5.7.2.2 Longitudinal Feedback Systems
5.7.3 Radio Frequency Power Plant
5.7.4 Radio Frequency Instrum. & Control Equip
5.8 other Vacuum Equip
5.9 Beam Instrumentation
6 Insertion Region Equip & Facilities at Points 3 & 7
6.1 Infrastructure & General Services
6.1.1 Civil Engineering Infrastructure
6.1.2 AC Electrical Distribution Network
6.1.3 Control & Data Network
6.1.4 Fluid Networks
 6.1.4.1 Air Ventilation
 6.1.4.2 Water Cooling
6.2 Cryo Distribution Line
6.3 Warm Quadrupoles
6.4 Warm Separation Magnets
6.5 Collimators, Absorbers & Scapers
6.6 Radiation Shielding
6.7 Powering Equip
6.8 other Vacuum Equip
6.9 Beam Instrumentation

7 Insertion Region Equip & Facilities at Point 6

7.1 Infrastructure & General Services
7.1.1 Civil Engineering Infrastructure
7.1.2 AC Electrical Distribution Network
7.1.3 Control & Data Network
7.1.4 Fluid Networks
 7.1.4.1 Air Ventilation
 7.1.4.2 Water Cooling
7.2 Cryo Plant & Cryo Distribution System
 7.2.1 Surface Cryogenic Plant
 7.2.2 Cold Compressor Boxes
 7.2.3 Interconnecting Box
 7.2.4 Cryogenic Distribution Line
7.3 Insertion Quadrupoles
7.3.1 Quadrupole Cold Mass
7.3.2 Isolated Cryostat
7.3.3 Electrical Feed Box

7.4 Collimators
7.5 Powering Equip
7.5.1 Power Converters
7.5.2 Copper Leads
7.5.3 HTS Current Leads
7.6 Beam Dump Equip
7.6.1 Ejection Kickers
7.6.2 Ejection Septa
7.6.3 Dilation Kickers
7.6.4 Ejection Collimators
7.6.5 Absorber Blocks
7.6.6 Vacuum Equipment in Extraction Lines

7.7 other Vacuum Equip
7.8 Instrumentation & Control Equip

8 Point 1.8 Special Equipment & Facilities
8.1 Infrastructure & General Services
8.1.1 Civil Engineering Infrastructure
8.1.2 AC Electrical Distribution Network
8.1.3 Control & Data Network
8.1.4 Fluid Networks
 8.1.4.1 Air Ventilation
 8.1.4.2 Water Cooling
8.2 Cryo Plant & Cryo Distribution System
 8.2.1 Surface Cryogenic Plant
 8.2.2 Cold Compressor Boxes
 8.2.3 Interconnecting Box
 8.2.4 Cryogenic Distribution Line
8.3 Magnet Measuring Benches
8.4 Reference Magnets
8.4.1 Reference Magnets Proper
8.4.2 Cryogenics and Feed Boxes
8.4.3 Magnet Powering
8.5 Test String

9 Transfer Line Equipment & Facilities
9.1 Infrastructure & General Services
9.1.1 Civil Engineering Infrastructure
9.1.1.1 Tunnel TI2 and Pit PM2

Annex A2 Extract of the LHC Product Breakdown Structure (page 4)
9.1.1.2 Tunnel T8
9.1.2 AC Electrical Distribution Network
9.1.3 Control & Data Network
9.1.4 Fluid Networks
9.1.4.1 Air Ventilation
9.1.4.2 Water Cooling
9.1.5 Tunnel Transportation Equipt & Infrastructure
9.1.6 Survey Equipt
9.2 Transfer Lines by themselves
9.2.1 Warm Dipoles
9.2.2 Warm Quadrupoles
9.2.3 Switch Magnets
9.2.4 Vacuum Chambers
9.3 Powering Equipt
9.4 Beam Instrumentation
10 LHC Injector Chain
10.1 SPS
10.2 CPS Complex

Luz Anastasia LOPEZ-HERNANDEZ
John PEDERSEN
Robin LAUCKNER
Mats WILHELMSSON
Jean ROCHE
Bernard PIROLLET
Keith KERSHAW
Jean-Pierre QUESNEL
Eberhard WEISSE
Volker MERTENS
Volker MERTENS
Volker MERTENS
Pierre STRUBIN
Gunnar FERNQVIST
Claude FISCHER
Kurt HUBNER
Karl Heinz RISSLER
Karlheinz SCHINDL